How to Do Word Problems

Ratio \& Proportion Applications

Ratio is a comparison between two numerical values usually written as a fraction in simplest form.

The ratio of A to B is $\frac{A}{B}$, then reduced to the simplest form.

The ratio of A to B can also be written as $A: B$.

Unit Ratio is a ratio in which the denominator is 1.

Example:

Find the ratio of 1.2 to 15 .

Solution:

The ratio of 1.2 to 15 is $\frac{1.2}{15}$ which needs to be in a reduced fraction.

$$
\begin{aligned}
\frac{1.2}{15} & =\frac{1.2(10)}{15(10)}=\frac{12}{150} \\
& =\frac{6 \cdot 2}{6 \cdot 25}=\frac{6 \cdot 2}{6 \cdot 25}=\frac{2}{25}
\end{aligned}
$$

So the ratio of 1.2 to 15 can be written as

$$
\frac{2}{25} \text { or } 2: 25
$$

Example:

Find the ratio of $3 \frac{1}{5}$ to $1 \frac{1}{3}$.

Solution:

The ratio of $3 \frac{1}{5}$ to $1 \frac{1}{3}$ is $\frac{1}{5} \frac{1}{5}$ which needs to be in a reduced fraction.

$$
\begin{aligned}
\frac{3 \frac{1}{5}}{1 \frac{1}{3}} & =\frac{\frac{16}{5}}{\frac{4}{3}}=\frac{16}{5} \div \frac{4}{3} \\
& =\frac{16}{5} \times \frac{3}{4}=\frac{16 \cdot 3}{5 \cdot 4}=\frac{4 \cdot 4 \cdot 3}{5 \cdot 4}=\frac{4 \cdot 4 \cdot 3}{5 \cdot 4}=\frac{12}{5}
\end{aligned}
$$

Solution(continued):

So the ratio of $3 \frac{1}{5}$ to $1 \frac{1}{3}$ can be written as.

$$
\frac{12}{5} \text { or } 12: 5
$$

When expressing answers to the ratio problems, do not use mixed numbers, and use decimal numbers only when working with unit ratio.

Example:

A 16 -ounce can of corn is priced for $\$ 1.36$. Find its unit ratio, that is its price per ounce.

Solution:

The unit ratio can be computed by dividing total cost by total weight.

$$
\frac{\$ 1.36}{16 \text { ounces }}=\$.085 \text { per ounce }=8.5 \dot{¢} \text { per ounce }
$$

An equation stating that two ratios are equal is called a proportion.

In the proportion equation $\frac{a}{b}=\frac{c}{d}$, the numbers a and d are called extremes while the numbers b and c are called means.

Cross-Multiplication

$$
\frac{a}{b}=\frac{c}{d} \rightarrow a d=b c
$$

In any proportion equation, the product of the extremes equals the product of the means.

Example:

Solve: $\frac{1.5}{12}=\frac{x}{40}$

Solution:

Using cross-multiplication.

$$
\begin{aligned}
\frac{1.5}{12} & =\frac{x}{40} \\
12 x & =40(1.5) \\
x & =\frac{40(1.5)}{12} \\
x & =5
\end{aligned}
$$

$$
x=5 \text { or }\{5\}
$$

Example:

Solve: $\frac{x-4}{x}=\frac{3}{5}$

Solution:

Using cross-multiplication.

$$
\begin{aligned}
\frac{x-4}{x} & =\frac{3}{5} \\
5(x-4) & =3(x) \\
5 x-20 & =3 x \\
5 x-3 x & =20 \\
2 x & =20 \\
x & =10 \\
& x=10 \text { or }\{10\}
\end{aligned}
$$

Example:

Solve: $\frac{x+3}{2 x-1}=\frac{1}{2}$

Solution:

Using cross-multiplication.

$$
\begin{aligned}
\frac{x+3}{2 x-1} & =\frac{1}{2} \\
2(x+3) & =1(2 x-1) \\
2 x+6 & =2 x-1 \\
2 x-2 x & =-1-6 \\
0 & =-7
\end{aligned}
$$

Since the last statement is false, there is no solution to this proportion.

Example:

A recipe calls for 2.5 cups of sugar to bake 10 muffins. How many cups of sugar do we need if we like to bake 28 muffins?

Solution:

We first set up the ratio of cups of sugar to the number of muffins, that is $\frac{2.5 \text { cups of sugar }}{10 \text { muffins }}$ and $\frac{x \text { cups of sugar }}{28 \text { muffins }}$.

Now we equate these two ratios to get the proportion

$$
\frac{2.5 \text { cups of sugar }}{10 \text { muffins }}=\frac{x \text { cups of sugar }}{28 \text { muffins }}
$$

Now we use cross-multiplication to solve $\frac{2.5}{10}=\frac{x}{28}$

Solution(continued):

$$
\begin{aligned}
\frac{2.5}{10} & =\frac{x}{28} \\
10 x & =2.5(28) \\
10 x & =70 \\
x & =7
\end{aligned}
$$

So we need 7 cups of sugar to bake 28 muffins.

Example:

A tall building has a shadow of 32.5 feet while at the same time a lightpost with the height 8 feet has a shadow of 12 feet. Use proportion to determine the height of the tree.

Solution:

We first set up the ratio of the height of the object to the length of its shadow, that is
$\frac{x \text { feet tall }}{32.5 \text { feet shadow }}$ for the tree and
$\frac{8 \text { feet tall }}{12 \text { feet shadow }}$ for the lightpost.
Now we equate these two ratios to get the proportion

$$
\frac{x \text { feet tall }}{32.5 \text { feet shadow }}=\frac{8 \text { feet tall }}{12 \text { feet shadow }}
$$

Solution(continued):

Using cross-multiplication to solve

$$
\begin{aligned}
\frac{x}{32.5} & =\frac{8}{12} \\
12 x & =32.5(8) \\
12 x & =260 \\
x & =\frac{260}{12} \\
x & =21 . \overline{6}
\end{aligned}
$$

The tree is about 21.7 feet tall.

