How to Do Word Problems

How to Do Word Problems

Ratio & Proportion Applications

Ratio is a comparison between two numerical values usually written as a fraction in simplest form.

The ratio of A to B is $\frac{A}{B}$, then reduced to the simplest form.

The ratio of A to B can also be written as A : B.

Unit Ratio is a ratio in which the denominator is 1.

How to Do Word Problems

Example:

Find the ratio of 1.2 to 15.

Solution:

The ratio of 1.2 to 15 is $\frac{1.2}{15}$ which needs to be in a reduced fraction.

$$\frac{1.2}{15} = \frac{1.2(10)}{15(10)} = \frac{12}{150}$$
$$= \frac{6 \cdot 2}{6 \cdot 25} = \frac{6 \cdot 2}{6 \cdot 25} = \frac{2}{25}$$

So the ratio of 1.2 to 15 can be written as

$$\frac{2}{25}$$
 or 2 : 25

How to Do Word Problems

Example:

Find the ratio of
$$3\frac{1}{5}$$
 to $1\frac{1}{3}$.

Solution:

The ratio of
$$3\frac{1}{5}$$
 to $1\frac{1}{3}$ is $\frac{3\frac{1}{5}}{1\frac{1}{3}}$ which needs to be in a reduced fraction.

$$\frac{3\frac{1}{5}}{1\frac{1}{2}} = \frac{\frac{16}{5}}{\frac{4}{3}} = \frac{16}{5} \div \frac{4}{3}$$

$$= \frac{16}{5} \times \frac{3}{4} = \frac{16 \cdot 3}{5 \cdot 4} = \frac{4 \cdot 4 \cdot 3}{5 \cdot 4} = \frac{4 \cdot 4 \cdot 3}{5 \cdot 4} = \frac{12}{5}$$

How to Do Word Problems

Solution(continued):

So the ratio of
$$3\frac{1}{5}$$
 to $1\frac{1}{3}$ can be written as.
$$\frac{12}{5}$$
 or $12:5$

When expressing answers to the ratio problems, do not use mixed numbers, and use decimal numbers only when working with unit ratio.

How to Do Word Problems

Example:

A 16-ounce can of corn is priced for 1.36. Find its unit ratio, that

is its price per ounce.

Solution:

The unit ratio can be computed by dividing total cost by total weight.

$$\frac{\$1.36}{16 \text{ ounces}} = \$.085 \text{ per ounce} = 8.5 \text{¢ per ounce}$$

An equation stating that two ratios are equal is called a **proportion**.

In the proportion equation $\frac{a}{b} = \frac{c}{d}$, the numbers a and d are called extremes while the numbers b and c are called means.

Cross-Multiplication

$$\frac{a}{b} = \frac{c}{d} \rightarrow ad = bc$$

In any proportion equation,

the product of the extremes equals the product of the means.

How to Do Word Problems

Examp	ole:		
Solve:	1.5	_ x	
	12	40	

Solution:

Using cross-multiplication.

$$\frac{1.5}{12} = \frac{x}{40} \\
\frac{12x}{12} = 40(1.5) \\
x = \frac{40(1.5)}{12} \\
x = 5$$

$$x = 5 \text{ or } \{5\}$$

How to Do Word Problems

Example:

Solve:
$$\frac{x-4}{x} = \frac{3}{5}$$

Solution:

Using cross-multiplication.

$$\frac{x-4}{x} = \frac{3}{5}$$

$$5(x-4) = 3(x)$$

$$5x-20 = 3x$$

$$5x-3x = 20$$

$$2x = 20$$

$$x = 10$$

$$x = 10 ext{ or } \{10\}$$

How to Do Word Problems

Exampl	le:				
Solve:	$\frac{x+3}{2x-1} =$	$\frac{1}{2}$			

Solution:

Using cross-multiplication.

$$\frac{x+3}{2x-1} = \frac{1}{2}$$

$$2(x+3) = 1(2x-1)$$

$$2x+6 = 2x-1$$

$$2x-2x = -1-6$$

$$0 = -7$$

Since the last statement is false, there is no solution to this proportion.

Example:

A recipe calls for 2.5 cups of sugar to bake 10 muffins. How many cups of sugar do we need if we like to bake 28 muffins?

Solution:

Ν

We first set up the ratio of cups of sugar to the number of muffins, that is $\frac{2.5 \text{ cups of sugar}}{10 \text{ muffins}}$ and $\frac{x \text{ cups of sugar}}{28 \text{ muffins}}$.

Now we equate these two ratios to get the proportion

$$\frac{2.5 \text{ cups of sugar}}{10 \text{ muffins}} = \frac{x \text{ cups of sugar}}{28 \text{ muffins}}$$

ow we use cross-multiplication to solve $\frac{2.5}{10} = \frac{x}{28}$

Solution(continued):

$$\frac{2.5}{10} = \frac{x}{28} \\ 10x = 2.5(28) \\ 10x = 70 \\ x = 7$$

So we need 7 cups of sugar to bake 28 muffins.

Example:

A tall building has a shadow of 32.5 feet while at the same time a lightpost with the height 8 feet has a shadow of 12 feet. Use proportion to determine the height of the tree.

Solution:

We first set up the ratio of the height of the object to the length of its shadow, that is

 $\frac{x \text{ feet tall}}{32.5 \text{ feet shadow}} \text{ for the tree and}$

 $\frac{8 \text{ feet tall}}{12 \text{ feet shadow}} \text{ for the lightpost.}$

Now we equate these two ratios to get the proportion

x feet tall	_	8 feet tall			
32.5 feet shadow	_	12 feet shadow			

Solution(continued):

Using cross-multiplication to solve

$$\frac{x}{32.5} = \frac{8}{12}$$

$$12x = 32.5(8)$$

$$12x = 260$$

$$x = \frac{260}{12}$$

$$x = 21.\overline{6}$$

The tree is about 21.7 feet tall.